In this paper we look into the use of crowdsourcing as a means to handle Linked Data quality problems that are challenging to be solved automatically. We analyzed the most common errors encountered in Linked Data sources and classified them according to the extent to which they are likely to be amenable to a specific form of crowdsourcing.
Tag: Dimitris Kontokostas
Linked Open Data (LOD) comprises of an unprecedented volume of structured data on the Web. However, these datasets are of varying quality ranging from extensively curated datasets to crowd-sourced or extracted data of often relatively low quality. We present a methodology for test-driven quality assessment of Linked Data, which is inspired by test-driven software development. We argue, that vocabularies, ontologies and knowledge bases should be accompanied by a number of test cases, which help to ensure a basic level of quality.